
Predicting Extreme pKa Shifts in Staphylococcal Nuclease
Mutants with Constant pH Molecular Dynamics

Evan J. Arthur1, Joseph D. Yesselman2, and Charles L. Brooks III1,2,*

1Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI
48109-1055
2Biophysics Program, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055

Abstract
Accurate computational methods of determining protein and nucleic acid pKa values are vital to
understanding pH-dependent processes in biological systems. In this paper we use the recently
developed method constant pH molecular dynamics (CPHMD) to explore the calculation of
highly-perturbed pKa values in variants of staphylococcal nuclease (SNase). Simulations were
performed using the replica exchange (REX) protocol for improved conformational sampling with
eight temperature windows, and yielded converged proton populations in a total sampling time of
4 ns. Our REX-CPHMD simulations resulted in calculated pKa values with an average unsigned
error (AUE) of 0.75 pK units for the acidic residues in Δ+PHS, a hyperstable variant of SNase.
For highly pKa-perturbed SNase mutants with known crystal structures, our calculations yielded
an AUE of 1.5 pK units and for those mutants based on modeled structures an AUE of 1.4 pK
units was found. Although a systematic underestimate of pK shifts was observed in most of the
cases for the highly perturbed pK mutants, correlations between conformational rearrangement
and plasticity associated with the mutation and error in pKa prediction was not evident in the data.
This study further extends the scope of electrostatic environments explored using the REX-
CPHMD methodology and suggests it is a reliable tool for rapidly characterizing ionizable amino
acids within proteins even when modeled structures are employed.
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Introduction
Stability and function of many proteins and nucleic acids are dependent on the charge of
titratable residues. Changes in the protonation state of these residues have the potential to
trigger significant configurational variation. Some examples include the proton-gradient in
mitochondria, which enables the rotary motion of ATP synthetase for virtually all known
metabolizing life forms.1,2 Additionally, the catalytic mechanisms of numerous enzymes are
driven by locally perturbed protonation equilibria at the active site.3 Furthermore,
amyloidogenic protein aggregation into oligomers is a pH driven process, demonstrating the
role of ionization states in protein function.4,5 In order to study these biological mechanisms,
it is crucial to understand how they are dependent on the ionization states of their amino acid
residues.
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Understanding these phenomena requires a system that describes the complex coupling
between structure, chemical composition and proton affinities as a function of proton
concentration (pH). Residue specific pKa values provide a framework from which to begin
to provide quantitative relationships among the above noted properties. However, the pKa of
a particular site and its tendency to ionize or accept a proton is highly responsive to the
surrounding solvent environment as well as to charge-dipole and charge-charge
interactions.6–8 These in turn alter the specific tendency for that residue to change its
ionization state, i.e., its pKa. For extreme cases, such as aspartic acid-96 in
bacteriorhodopsin, the measured perturbation is at least 8.0 pK units greater than that of the
isolated amino acid in pure water.3 This creates a need for measuring the relative amino acid
pKa perturbations in a folded protein. Determining these experimentally, however, is
nontrivial, though possible through a range of techniques.9

Experimentally investigating pKa values involves titrating a species over a wide range of
pH.9 Most biologically functional proteins, however, are natively folded only within a very
narrow pH range. Outside of these native conditions they often adopt non-native, denatured,
or unfolded conformations. Since the pKa values of an ionizable residue is highly dependent
on its interactions with solvent and surrounding protein tertiary structures, titrating a protein
to pH values outside of this range may not provide pKa values relevant to its natively folded
configuration.7 To aid in both the calculation and interpretation of such experiments,
theoretical tools have been developed to make pKa predictions based on knowledge of the
native protein structure. For many proteins, a reliable method of experimentally determining
residue-specific pKa values is either too cost prohibitive, or infeasible. Before such
experimental methods become viable, computational tools are the only means available for
studying their pKa values.7,8

The theoretical framework and computational methods to predict pKa shifts in large
molecules can be divided into three basic approaches: finite difference Poisson-Boltzmann
based continuum electrostatics methods, empirical methods, and molecular dynamics
coupled with explicit free energy estimates using explicit solvent or implicit solvent
(generalized Born continuum electrostatics) methods. Empirical methods, such as
PROPKA,10,11 are based upon empirical algorithms that relate structural metrics to pKa
perturbation. Provided with sufficient relevant experimental data and an accurate structure
of a protein, this method has been shown to yield predictions within 1 pKa unit root-mean-
squared deviation (RMSD) from experimental observation. This level of agreement with
experimental pKa values shows that the corresponding link between structural metrics and
pKa shifts is an important tool in understanding the electrostatic environments of proteins.
Empirical methods, however, cannot be used to determine pKa values without both
extensive experimental data and a high-resolution protein structure.11 Poisson-Boltzmann
equation based methods, such as MCCE12,13 and MEAD14,15 calculate the macroscopic
electrostatic effects of ion-ion and ion-dipolar interactions, such as between a titrating site
and polar solvent molecules given the dielectric response of the protein interior. Provided
with a high-resolution crystal structure, they offer predictions within 1 pKa unit root-mean-
square deviation (RMSD) for residues with relatively high solvent exposure. Since the
accuracy of this method is directly related to solvent interactions, it often leads to inaccurate
predictions when the target titrating residue has little macroscopic solvent interaction, or if
the target site’s pKa is significantly altered by conformation.16 In order to explore poorly
understood protein systems, relatively more brute-force methods using molecular dynamics
(MD) with simulated titration may be necessary.

MD simulations can derive information from virtually any protein system as long as atomic
interactions can be parameterized into a consistent force field and explicit coordinates can be
defined.7,8 This provides the potential for MD based methods to estimate residue pKa values
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of lower-resolution or even partially solved structures. Calculating pKa then relies upon
parameterizing the solvent model. The effective Born radii of individual residues may be
calculated from the shape of the protein’s solvent exposure, and from that information
ionization energies may be calculated. In comparative tests, MD based methods consistently
provide more accurate pKa estimates over a wider variety of protein residues and
environments than other computational methods.7,8

There are two dominant approaches available for the inclusion of titrating sites in MD based
pKa calculation methods: discrete and continuous. Discrete methods titrate residues using
Monte Carlo (MC) sampling, which allow protons to be added and deleted from amino
acids.17 However, recurring instantaneous switches of protonation states by adding or
deleting the protons result in discontinuities of energy and force calculations. Additionally,
only one proton addition or deletion move is made during a MC step, which contributes to
slower convergence for systems with many ionizable groups.17 Nevertheless, discrete
protonation state methods coupled with molecular dynamics have proven to be useful in
exploring pKa values of proteins.18

Continuous methods by definition allow a gradual change in the “titration” coordinates
during the MD simulation. This permits continuous energy and force calculations, yields
greater sampling rates, and enables the titration of multiple sites simultaneously. The
accuracy and efficiency of continuous dynamical methods make them a useful methodology
for studying many proteins.7,8,19

In this paper we utilize a recently developed continuous method called Constant pH
Molecular Dynamics (CPHMD).6,20 It is a component of the CHARMM simulation and
modeling package21 and employs a variant of the λ dynamics methodology in
CHARMM22,23 and the generalized Born with simple switching (GBSW) implicit solvent
model to mimic the effects of the solvent environment24,25 with continuous atomic
trajectories.26 The dynamics of the titration coordinates for ionizable residues is
characterized by as many as two continuous coordinates for each ionizable amino acid in the
form (λ, x). The variable λ corresponds to the protonation state of the residue and x controls
of the interconversion between tautomeric states.6 For single site titrations, such as the atom
NZ in lysine, x is unnecessary since there are no tautomerers. Residues with multiple
protonation sites such as aspartic acid are defined with three states, (λ=1) for the
deprotonated, (λ=0, x=1) for the OD1-protonated state, and (λ=0, x=0) for the OD2-
protonated state. By simulating protonation in this manner, pKa predictions are made with
both rapid convergence and accurate predictions to within 1.0 pK units.6,7,20

CPHMD has been successfully employed in the prediction of the pKa values of amino acids
both in small peptides and in proteins. Recently Khandogin and colleagues demonstrated
CPHMD’s accuracy on turkey ovomucoid third domain and bovine pancreatic ribonuclease
A, by predicting experimental pKa values within 0.6 to 1.0 pK units, respectively.6
Although their simulations verified CPHMD’s ability to provide accurate pKa estimates of
ionizable side chains, almost all protein residues included in this study had relatively small
pKa perturbations of several pK units or less. Considering the earlier example of aspartic
acid-96 in bacteriorhodopsin, a perturbation of several units represents a narrow range of
possible pKa values for protein residues. In pursuit of computational methods to address
these highly perturbed electrostatic environments, the methods must be able to calculate the
pKa of titrating amino acids regardless of the size of the perturbation. Therefore, it is
necessary to test CPHMD in predicting highly perturbed pKa values for biologically
relevant systems. Staphylococcal Nuclease (SNase) represents an ideal example of such a
system, because it has both decades of folding and structural research and a variety of
hyperstable mutants, including many with highly perturbed pKa values.27–30
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SNase is a relatively small protein consisting of a single polypeptide chain of 149 amino
acids with no disulfide bonds. Its simple structure, prevalence in nature, and lack of
chaperon-assisted folding to achieve its native fold have made it a model system for
studying protein folding, point mutations, and the role of amino acids in protein function.
Using site-directed mutagenesis, the various roles of residues in SNase’s stability and
folding pathway have been discovered, leading to a thorough understanding of the
protein.30–33 Putting theory into practice, this information was used to develop a hyperstable
variant of SNase, known as Δ+PHS. This variant has five point mutations (G50F, V51N,
P117G, H124L, and S128A) and a truncation (residues 44–49).30 It is extraordinary in its
ability to remain in its native conformation both over a broad range of pH and temperature,
and when subjected to additional point mutations.27,30 This resilience enables all its ionizing
residues to be titrated experimentally, even with the introduction of hydrophilic residues into
the protein’s hydrophobic core.27,30

In previous work by Garcia-Moreno et al., the conformational role of aspartic and glutamic
acids in Δ+PHS were studied in detail.30 All such residues were titrated for pKa calculations
by measuring the pH dependence of the chemical shifts of Cγ or Cδ with two-dimensional
HBHC(CBCG)CO experiments.30 These results are summarized in Table 1 under
“experimental pKa”. Additionally, 27 point-mutation variants of Δ+PHS (2 aspartic acids
and 25 glutamic acids) were successfully created. Each variant was titrated to measure the
pKa at the mutation site by analyzing the pH correlation with changes in Gibbs free energy
of unfolding (ΔΔG°H2O) with GdnHCl as a denaturant. These results are given in Tables 2
and 3 under “experimental pKa”.27 These experiments provide a comprehensive
quantification of the changes of internal energy within Δ+PHS in relation to introducing a
hydrophilic residue into the hydrophobic core of the protein. The shielding effect of the
surrounding hydrophobic amino acids greatly reduces solvent interactions with the glutamic
and aspartic acid mutations, and consequently perturbs their pKa values by as much as 5 pK
units. The measured perturbation in pKa values for these systems provides an experimental
basis for testing and comparing the accuracy of CPHMD simulations in the calculation of
highly perturbed pKa values of these acidic side chains.

The calculations we present below provide a significant test of the robustness of CPHMD
predictions of pKa. We consider four sets of calculations for glutamic acid (GLU) and
aspartic acid (ASP) residues in Δ+PHS: (1) predicting the pKa values for each GLU and
ASP in the Δ+PHS structure, (2) the value of each point mutation for proteins with solved
crystal structures, (3) those of each point mutation without crystallographically determined
structures, and (4) and calculating the pKa values of specific residues in systems similar to Δ
+PHS. The first set of calculations confirms that our computational methods can accurately
predict the pKa values for this protein. The second and third studies explore the accuracy of
pKa calculations for proteins of less understood systems. The last set of calculations
investigates the use of similar crystal structures to study a target system. For mutants
without solved structures, structures of the mutant proteins were built in CHARMM by
mutating the Δ+PHS structure. The computational results are compared with NMR titrations
to establish the overall quality and capability of CPHMD pKa predictions over a range of
perturbed pKa systems. It should be noted that this protocol was not a blind study. The
calculations within this paper were carried out over the course of two years, which both
preceded and followed the release of the measured pKa values of SNase and Δ+PHS. This
study represents an ongoing effort to assess the accuracy of the REX-CPHMD process
during its development.
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Methods
REX-CPHMD Protocol

Replica Exchange (REX), or parallel tempering, is a method of increasing barrier crossing
rates by simulating an ensemble of proteins distributed through temperature space.34 During
a REX simulation a single protein structure is replicated and simulated in parallel over an
exponentially spaced temperature range. After a defined time (replica cycle), the replicas are
allowed to exchange atomic configurations with adjacent temperature windows based on the
Metropolis criterion.34 This technique has shown success in modeling protein folding and
peptide dynamics34 and has been incorporated into numerous simulation
environments.7,35,36 As it concerns our study, it was used to enhance sampling of the protein
conformational space around the vicinity of the native fold as well as the conformations of
the tautomeric states of the titrating amino acids during CPHMD.

CPHMD is a methodology developed by Brooks and coworkers that assigns titration
coordinates to ionizable hydrogen atoms, (λ, x), which are propagated simultaneously with
atomic coordinates.6,20 These coordinates control a smooth turning on or off of van der
Waals and electrostatic interactions of hydrogen atoms in these groups, which enables a
direct coupling between conformation and protonation states.20

In the REX-CPHMD protocol, λ and x coordinates are recorded at the end of each replica
cycle for all titrating residues as defined in equation 1.

(1)

As such, x defines the dominant tautomer during the cycle (x < 0.1; x > 0.9) and λ indicates
whether that tautomer is protonated (λ < 0.1) or deprotonated (λ > 0.9). The non-physical
regions of λ and x space that are not representative of protonated or deprotonated
configurations enable a continuous transition between protonation states. Barriers are added
to the energy functions for these coordinates to diminish the time spent in such states. 6,20

After completing all REX cycles, analysis was performed using the CPHMD tools within
the MMTSB Tool Set (rexanalysis.pl) to collect all titration coordinates into the values Nprot

and Nunprot.35 With enough replica exchanges, the population of states converges to the
probability of state (S) as defined in equation 2.

(2)

Sunprot is the probability of a residue being unprotonated. ρunprot and ρprot are the
probabilities associated with the unprotonated and protonated states. Sunprot is related to pKa
in the Henderson-Hasselbalch (HH) equation given in equation 3.

(3)

In this equation, the Hill coefficient (n) and the pKa can be fit given a set of S and pH
values. In this study, 10 to 15 (pH, S) points per titrating residue were found to give the
optimal trade-off between accuracy and computational time. For residues titrating multiple
protonation sites, such as aspartic and glutamic acids, pKa values for each site are calculated
separately. These pKa values are combined into a total pKa via equation 4.
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(4)

Modeling Salt effects
As has been shown in earlier calculations, the accurate recapitulation of experimentally
measured pKa values depends on modeling both the aspects of the solvent environment and
the influence of ionic strength correctly.7 To model solvent in our REX-CPHMD
calculations we use the optimized GBSW model37 together with the simple Debye-Hückel
correction introduced into GB models by Case et al.38,39

Simulation Protocol
All REX-CPHMD simulations were run using the aarex.pl tool as part of the MMTSB Tool
Set,35 which performs replica exchange simulations using the PHMD6,20 and GBSW24

modules within the CHARMM program environment.21 Simulations were performed using
the CHARMM22 all-atom force field for proteins40 with CMAP37,41 and optimized GB
input radii.37 This protocol was intended to follow closely to that performed by Khandogin
and Brooks, and thus unprotonated fractions (S) of residues were calculated for pH values
between pH=2 and pH=9 in all cases.7 For residues with highly perturbed pKa values, this
range was extended by several pH units.

During each simulation, the protein was replicated in 8–16 temperature windows spanning
from 298 K to 400 K. This range of temperatures was chosen so that the exchange ratio was
approximately 35 to 45%.7 All replicas were run simultaneously through exchange cycles:
each cycle consisted of 500 dynamic steps (a total of 1 ps) followed by an exchange attempt.
During an exchange attempt, adjacent temperature windows were allowed to exchange
replica structures based on the Metropolis criterion.34 The total sampling time of each
protein was 4 ns. Debye-Hückel screening24 of charge-charge interaction was used to
represent the 150 mM salt concentration in the solvent.7 All simulations included a Nosé-
Hoover thermostat to maintain the desired temperature for each window.26 For the GB
calculations, a smoothing length of 0.6 Å at the dielectric boundary with 24 radial
integration points up to 20 Å and 38 angular integration points were used. The nonpolar
solvation energy was computed using the surface tension coefficient of 0.03 kcal mol−1

Å−2.42 The SHAKE algorithm allows a 2 fs time step when applied to hydrogen bonds, and
a 22 Å distance cut off was applied to truncate the non-bonded in non-bonded energy
evaluations.

Structures of Δ+PHS were processed according to their availability, which led to a division
into two groups for this study: those with solved protein structures, and those without. All
solved structures, including Δ+PHS and many of its mutants, are listed in Table 2 as their
corresponding PDB codes. These structures were downloaded from the Protein Databank
www.pdb.org.43 For those without solved structures, the Δ+PHS structure was
computationally mutated as explained in the following section.

Each PDB file was processed to remove all non amino acid residues and to convert the PDB
file into a CHARMM supported format with convpdb.pl from the MMTSB toolset.35 During
this step the ligand thymidine-3’,5’-diphosphate was removed to make the crystal structures
match those used during the NMR analyses performed by Isom et al.27 Structures were
minimized for 500 steps with steepest descents and harmonic restraints (10 x mass) on
heavy atoms. All titrating residues were patched appropriately so that CPHMD could
recognize them correctly. The glutamic acid and aspartic acid patches represent doubly-
protonated residues with the hydrogen atoms bound to the ionizing oxygens.
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Mutation Protocol
For Δ+PHS mutants without a PDB structure, coordinates were generated computationally
from the Δ+PHS PDB structure (3BDC) using mutate.pl from the MMTSB toolset.35 This
protocol eliminates an amino acid at a user-specified location, and replaces it with the
desired mutation. The structures were minimized using steepest descents for 500 steps with
harmonic restraints (10 x mass) on all heavy atoms using minCHARMM.pl. Several mutants
had significant atom clashes after running mutate.pl. These structures underwent 100 steps
of steepest descents all-atom minimization using minCHARMM.pl to resolve the structural
conflicts, followed the 500 step energy minimization with harmonic restraints on heavy
atoms.

As a measure of confidence in the method, the average structure was calculated from each
simulation trajectory and then compared to its original PDB of Δ+PHS by a backbone-based
RMSD analysis of structural alignment. These values are given in Tables 2 and 3. The low
values suggest that the mutations are accommodated without requiring significant
reorganization of the protein.

Results
Δ+PHS

The pKa values of all 17 carboxylic acids in Δ+PHS were determined from 3BDC, as shown
in Table 1. There is reasonable agreement between the observed and calculatedcalculated
pKa values, with an AUE of 0.99 pK units. Fifty-nine percent (59%) of the residues had an
error of less than 1 pK unit. This suggests that our protocol is able to determine pKa values
of diprotic residues for this protein, even if they are in a greatly perturbed state. These
findings are consistent with previous studies using CPHMD in that an AUE of 1 pK unit or
less was achieved for proteins containing ionizable side chains in the core.7

Figure 1 shows that the titrated residues in our calculations sample a variety of solvent-
exposed environments. Glutamic acid residues (GLU) at α-helical locations (57, 67, 101,
122, 129, 135) showed an average error of 0.5 pKa units, those in β-sheets (10, 73, 75)
showed an error of 1.0 unit, and those in flexible side-chains (43, 52) showed an error of 0.8
units. Aspartic acid residues (ASP) (19, 21, 40, 77, 83, 95) were all on flexible side-chains,
and showed an AUE of 1.5 units.

Of the titrating residues, 7 had errors in calculated pKa values that were greater than 1 pK
unit from experimental values, 6 of these were ASP. Surprisingly, 4 of these 6 residues (Asp
19, Asp 21, Asp 40, and Asp 95) were in unstructured regions relatively far from the center
of the protein. Previous research suggested that when a titrating residue has a large surface
area exposed to solvent its ionization state is well defined by the GBSW model, resulting in
a better pKa prediction.7 This phenomenon will be explored further in the Discussion
section.

Δ+PHS mutants with known structure
Of the 27 Δ+PHS mutants studied in this work, five (5) had solved coordinates. Figure 2
illustrates their similarity by overlapping their secondary structural representations. The
RMSD between any two proteins was less than 0.35 Å. Their six (6) corresponding PDB
codes and calculated pKa values are shown in Table 2. We list only the pKa values of
residues reported by the NMR titration experiments (see supplementary data for a complete
list of computed pKa values). There is good agreement between the observed and calculated
ionization equilibria, with an AUE of 1.5 pK units.
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The stability of proteins was monitored during the simulation by the RMSD between the
initial and average structures of each simulation. The RMSD of all simulations averaged to
1.3 Å (specific values are shown in Table 3). This indicates that the conformational changes
and fluctuations that occurred during the simulations are relatively small, even when the
proteins were subjugated to a wide range of pH conditions. This also indicates that such
fluctuations are greater than the structural differences between different mutants.

Δ+PHS compared to I92E mutants
The mutant glutamic acid pKa values for two I92E structures were predicted (1TR5 and
1TQO), which provides some insight into the sensitivity of CPHMD to conformational
differences in the starting structures of the proteins. The two structures had an RMSD of
0.85 Å from each other, and an RMSD of 1.10 Å when compared to Δ+PHS. This suggests
that in the case of Δ+PHS, conformational rearrangements near the point of mutation are
comparable to differences in multiple ground state configurations. These rearrangements can
be explained as the energy cost of allowing Glu 92 access to solvent.

When comparing the ionization of all titrating residues between Δ+PHS and its I92E
mutants, most aspartic and glutamic acid residues titrated to values less than 1 pK unit from
each other, as seen in Table 4. This falls within 1 pKa unit of error, as seen in previous
research.7 Residues outside of this margin include all residues on flexible regions of the
protein, such as all ASP residues. These residues sample a wide range of fluctuations in the
environment, which may require a longer time to converge to a correct pKa estimate. There
was a consistent trend that corresponding residues yielded similar pKa predictions, which
suggests that the conformational changes induced by point mutations do not destroy the
overall accuracy of the calculation for other ionizing residues. This opens the possibility that
when predicting pKa values, a solved structure may not be necessary; if an approximation of
the secondary and tertiary structures can be found, pKa values might still be predicted using
REX-CPHMD. The remaining calculations in this study are designed to explore this
possibility.

Δ+PHS mutants with modeled structure
Eighteen (18) of the reported pKa values from previous analyses did not have a
corresponding solved structure in the PDB. Assuming that the solved structure of Δ+PHS is
an adequate approximation of the system, models for these proteins were created by
computationally mutating the Δ+PHS PDB file 3BDC. For these mutants the results from
our pKa calculations appear in Table 3. Changes in the amino acid sequence of Δ+PHS, and
our modeling of them, could affect the quality of the calculated pKa values. However, these
changes are apparently small enough to allow accurate predictions of the pKa values for the
mutated proteins to within an AUE of 1.4 pKa units. This indicates that even in the absence
of a crystallographically determined starting structure, the CPHMD methodology can yield
accurate predictions of pKa shifts with an AUE similar to those calculated from solved
crystal structures. A caveat here, is that this technique requires a near-match of crystal
structure in order to model the chemistry of the target system.

Calculation of a single residue
During this study, all residues were titrated simultaneously for every structure. This ensured
that all cooperative protonation interactions between nearby titrating residues were
considered. When the pKa of only a single titrating residue is desired, however, it may be
more efficient to titrate only the target residue. This was tested by calculating the pKa value
of the glutamic acid residue of the I92E (1TR5) mutant by allowing only the mutant residue
to titrate. The calculation produced a value of 6.4 pK units, compared to 6.8 pK units when
all ionizable residues were allowed to titrate. Since titrating residues don’t significantly alter
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the ionization equilibria of distant parts of the system, these results suggests that the
differences in accuracy by simulating the titration of one residue may be small enough to
allow accurate pKa prediction. The caveat for performing only a single-site titration during a
REX-CPHMD simulation is that it ignores any cooperative protonation chemistry and the
subsequent dynamics influenced by it. This simplification can greatly reduce the
computational cost of modeling pKa changes in large systems with many titrating residues
by reducing time to reach convergence.

Calculation from similar PDB structures
In many cases atomic coordinates are not available for a particular protein from
crystallographic or NMR studies. This portion of the study investigates the accuracy of pKa
predictions when using a PDB with a similar tertiary structure to the target one to determine
pKa values. Three mutants of Δ+PHS were matched with three PDB files that had nearly-
identical conformations to Δ+PHS: 1U9R, 2OXP, and 2OEO. These pairings, including their
experimental pKa values, appear in Table 5. To illustrate their similarity with Δ+PHS, all of
these structures appear in Figure 2 overlaid with the other structures homologous to Δ+PHS.

The results from the pKa calculations were surprisingly accurate, especially considering that
2OEO (similar to Δ+PHS I92E), provided the most accurate result despite lacking five
ionizable lysines from the Δ+PHS/I92D structure used in the experimental calculations.
Since these residues only titrate at dissimilar pH values than GLU, it is unlikely these
changes to the sequence had substantial effects on the target ASP-92 mutation. These results
suggest that REX-CPHMD can provide accurate pKa calculations from a similar structure
even in the absence of an exact match of amino acid sequences. These also suggest that
approximating the tertiary conformation of a protein may be sufficient to predict its pKa
values accurately.

V39E and A109E mutants
The two simulations that yielded the poorest outcome for calculated f pKa values, V39E and
A109E, were examined for structural exceptions that may have caused their unusually high
deviation. In both cases the mutant residue was on an unstructured region of the protein, and
both residues flipped their orientations outward in the averaged structures from their
respective simulations. The conformational change then exposed the GLU residues to more
solvent than had they remained in the interior of the protein, thereby lowering their
calculated pKa values. This change is evident in both structures’ having relatively large
RMSD values between the average structure and the initial structure. This conformational
change may be due to the understabilization of local salt bridges that would otherwise pull
the residues into the interior of the protein or have arisen from model preparation and
equilibration protocols. The averaged structure of the V39E mutant appears to have a stable
GLU39 – LYS110 salt bridge that exposes the V39E mutation to more solvent (leading to a
reduced pKa). During the calculation, however, the GLU39 – ARG35 salt bridge may be the
dominant orientation of the mutant site, which would draw the GLU into the interior of the
protein (leading to an elevated pKa). The A109E mutant showed an average structure with a
solvent-exposed LYS108 – GLU109 salt bridge. This bridge may have been overstabilized
relative to the ARG105 – GLU109 salt bridge that would draw the mutant residue into the
core of the protein. These residues could be exceptions to the current update of the GBSW
force field.37

Comparison with similar work
During the course of this study, a publication with many similar results to this paper was
published by Wallace et al.44 These results are listed in Table SI1. Although they calculated
pKa values both in CHARMM and using an identical GBSW force field, their calculations
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yielded a somewhat lower AUE of 1.1 pK units. This difference appears to have arisen from
the linear fitting of the HH equation to single pH points. This technique involves calculating
and averaging pKa values from several (or one as in their case) points where Sunprot is nearly
0.5, and assuming that the Hill coefficient (n) is equal to unity. To test this, a single Sunprot

fraction from this study was used to calculate each pKa value available. The results gave an
AUE identical to that from the Wallace et al. paper (1.1 pK units), and an average unsigned
difference from the HH fit of less than 0.3 pK units per residue. When the pH values were
chosen closest to this study’s calculated pKa values, the calculations yielded an identical
AUE as the HH-equation curve fitting method (1.3 pK units), and an average unsigned
difference from the HH fit of less than 0.3 pK units per residue. This indicates that more
accurate pKa values may be calculated with fewer points than fitting a complete HH
equation curve, when the appropriate single pH value has been determined. The caveat of
this method is it may require manually choosing the data points used to solve the linear fit
and is clearly not applicable when multiple sites are of interest.

Discussion
Making use of the replica-exchange enhanced sampling protocol and the improved
parameterization of the GBSW implicit solvent model, we determined the pKa shifts of a
large number of SNase buried charge mutants. Our study provides accurate calculations of
the ionization properties of buried charge groups in proteins, and supports our REX-
CPHMD method as a useful tool for studying pKa shifts.45 Additionally, the titrating groups
in the mutants of this study have among the most-perturbed carboxylic acid pKa values
observed.27 Being able to predict such titration shifts accurately suggests that CPHMD
simulations and the GBSW implicit water model provide a robust methodology for
exploring electrostatic environments of protein interiors.

When taking the perspective of a null model, where all GLU and ASP are assumed to have
fixed pKa values of 4.07 and 3.86, respectively,46 the AUE of predicting pKa values is
similar to CPHMD when observing amino acids with a small perturbation. Results in Table
1 show that the null model had an AUE of 0.85 pK units, while CPHMD had an AUE of
0.99 units. The null model fails when large perturbations are being observed. The low-pKa
bias for ASP residues in Δ+PHS, for instance, was consistently modeled better with
CPHMD by several tenths of a pK unit. As Figure 3 illustrates, when the perturbation of the
amino acid is more than one unit, CPHMD calculations are significantly better. When
considering all pKa predictions within this experiment, the analogous result from the null
model prediction has a mean AUE of 3.54 pK units, as compared to the AUE of 1.31 units
with CPHMD. A relative confidence level of CPHMD is shown in Figure 4 by listing the
complete comparative statistics of this study. All calculated residues that had corresponding
experimental data are listed by order of increasing error. 48% had an error below 1 pK unit.
This margin contains 58% of Δ+PHS residues, 44% predictions from PDB files, and 50% of
predictions from modeled structures.

We note that although pKa is defined by protein structure, no strong correlations were found
between the error of the pKa prediction and large-scale structural phenomena within the
scope of this study. These include conformational changes caused by the relaxation of the
protein (supporting information: Figure SI 1), changes in residue volume from the mutation
(supporting information: Figure SI 2), and proximity to the bound ligand thymidine-3’,5’-
diphosphate present in the PDB structure (supporting information: Figure SI 3). The R2

values of these trends were 0.29, 0.002, and 0.001 respectively. This indicates that the
methodology may not be significantly improved by accommodating such conformational
trends or exceptions. This provides insight into the robustness of CPHMD: our method
repeatedly yields accurate predictions of pKa values almost irrespective to such phenomena.
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The one trend consistent enough throughout this study was the under-prediction of pKa
values, as seen in Figure 3. When calculating residue pKa values of Δ+PHS mutants,
twenty-three of twenty-nine values were underpredicted. This suggests that CPHMD may
systematically overstabilize the ionized form of the residues studied, and indicates avenues
of refinement in the updated GBSW-specific force field created in previous work.37 In order
to refine the protocol significantly, adjustments may need to be made to the force field and
titrating residue patches to increase the perceived perturbation of residue pKa values.

While refinements should be made to improve the accuracy of the CPHMD protocol, this
study provides a modest benchmark of its capability to predict highly perturbed pKa values
of buried charge residues in proteins. This promises to aid the evaluation and
characterization of ionization in protein interiors, which could give valuable insight into the
mechanism of pH-based biological activity.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Locations of ionizable residues in Δ+PHS
Δ+PHS staphylococcal nuclease is shown here with all ionizing residues highlighted.
Glutamic acid is cyan, and aspartic acid is orange.
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Figure 2. Apparent tertiary structure similarity between various solved crystal structures used
in this study
Δ+PHS staphylococcal nuclease, its 6 solved PDB structures, and three structural
homologues are all shown overlaid with one another. The mutated residues are shown in red.
All mutants had an RMSD of less than 0.35 Å, indicating that even with the introduction of
hydrophilic residues into the protein’s interior, the structure of Δ+PHS is not significantly
distorted.
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Figure 3. Calculated vs Experimental pKa
All pKa values that had a corresponding experimental pKa value are presented in this graph.
This includes all values from Tables 1, 2, 3, and 5. Calculated pKa values that had no
corresponding experimental value are presented in the supplementary information. A perfect
prediction would presumably place all points along a 45° incline from the origin. The ideal
range of ±1 pK unit error from this diagonal has been highlighted. The null model region is
the horizontal range of ±1 pK unit error from unperturbed ASP and GLU pKa values of 3.86
and 4.07 respectively. As shown, CPHMD excels in discovering and mapping large
perturbations in pKa.
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Figure 4. pKa values of GLU and ASP residues in 29 internal positions in staphylococcal
nuclease
This is a list of mutations in order of increasing unsigned difference of experimental
determination of apparent pKa value, and its calculated value using CPHMD.
Approximately half (48%) of the calculated values had a difference of less than 1 pK unit.
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Table 1

Observed versus calculated pKa values in ∆+PHS. pKa values for residues beyond 141 were not reported here,
because their coordinates are not solved in most of the crystal structures used during this study. This includes
the 3BDC structure used to calculate the data for this table.

Residue Experimental
pKa32

Calculated pKa Error (CPHMD) Error (Null Model)

Asp-19 2.2 3.8 1.6 1.7

Asp-21 6.5 5.4 −1.1 −2.7

Asp-40 3.9 2.0 −1.8 0.0

Asp-77 <2.2 0.8 COR <−1.7

Asp-83 <2.2 3.8 COR <−1.7

Asp-95 2.2 3.4 1.3 1.7

Glu-10 2.8 3.3 0.5 1.3

Glu-43 4.3 3.8 −0.6 −0.2

Glu-52 3.9 4.9 1.0 0.2

Glu-57 3.5 4.4 0.9 0.6

Glu-67 3.8 3.6 −0.1 0.3

Glu-73 3.3 2.4 −0.9 0.8

Glu-75 3.3 4.9 1.6 0.8

Glu-101 3.8 3.5 0.3 0.3

Glu-122 3.9 4.7 0.8 0.2

Glu-129 3.8 4.4 0.7 0.4

Glu-135 3.8 4.4 0.7 0.3
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